An Improved Oil Shale Retort

A Road Not Taken

26th Oil Shale Symposium October 17, 2006 Larry M. Southwick, P.E. Cincinnati, Ohio

Outline

- Introduction
- Fluid Bed Retorts
- Fluid Catalytic Cracking
- Fundamentals
- Demo Plants
- Resolution

Synfuels Basics

- Oil shale
 - Kerogen
 - ◆ Heating (500°C or more)
- Oil sands
 - Bitumen
 - Water dissolution
- Oil and gas
 - No mining required
 - Generally higher quality products

Challenges

<u>Technology</u>

- Large scale mining
- Whole mass must be heated
- Small unit sizes heretofore
- Recovery low (<~50% of organic C)</p>
- Dusting into product oil
- Beneficiation has not been successful

Challenges

Other Areas

- Operational risks (need good demo plant)
- Environmental permitting/liabilities
- Uncertain public policy
- Lead time design, permitting, construction
- Economics
 - Lots of iron and steel in plants
 - Ergo, oil price goes up, plant cost rise
 - Can't get there from here

Fluid Bed Retorting

Hytort

- High pressure, hydrogen, misting
- Not viable as moving bed redesign
- Fluid bed tried
- Chattanooga Energy
 - High pressure, hydrogen, spouted bed
- Ensyn/lvanhoe
 - High velocity cyclonic vessel
 - Biomass, heavy oil, oil shale

Fluid Cat Cracking

- ESSO
 - ◆ 1940's, Australian shales
 - Yield loss, dusting into product
- Sinclair
 - Hot gas from combustion to heat retort
 - Modify Gas Combustion
- METC
 - Stacked beds (Kellogg A)

Fluid Shale-Oil Retorting Process Developed by Standard Oil Development Co.

Advanced Concepts

Kentort II

- Devonian, pyrolyzer, gasifier, combustor
- Heat carrier, reactivity
- ♦ Tarry, dirty oil
- Univ. of Queensland/CSIRO
 - Circulating beds: retort & combustor
 - Inert carrier, or well combusted spent shale
 - Higher temperature = higher yields
 - Rundle Twins road not taken (ATP)

Simplified flow diagram of the experimental KENTORT II multistaged system

4

Integrated retorting/combustion rig

Oil Company Entries

- Exxon
 - FCCU pilot plant, secretive
 - Green River shale, Rundle shale
 - Dusts into oil
 - Viewed as not viable
- Amoco
 - Circulating beds: Contactor, retort, combustor
 - Inert carrier or combusted spent shale
 - ♦ Basic data, shale holding time, strip vapors
 - Shale fines into product oil, same on Lurgi
 - Sand lost to system, replaced by spent shale
 - Viewed as not viable

Design Resolution

- Inert carrier
 - No spent shale in retort better yield
 No dusts into oil better quality oils
- Fluid bed design
 - Like Amoco
 - Do not allow carrier/shale separation
 - Remove dust from carrier after heating
 - Obtain basic data: temp., particle data, fluidization characteristics (species, psd)
 - Need pilot testing

Conclusions

- High oil prices will not make small scale units magically become economical
- Too much iron, steel and concrete
- Need to find a larger capacity alternative
- FCCU holds considerable promise
- Think beyond Big Oil's dead ends
 - FCCU benefited from years of improvements
- Investigate beneficiation fines not an issue if FI. Bed
- Oil sands has done it, oil shale can too!