Sequence stratigraphic and stable isotopic expressions of over-filled and balanced-filled transitions within the Tipton Member of the Green River Formation, WY

Jennifer C. Walker
EnCana Oil and Gas, USA

Alan R. Carroll
Department of Geology and Geophysics
The University of Wisconsin-Madison
Eocene Lake Gosuite

TECTONIC SETTING
- Cordilleran Foreland
- Laramide-style uplifts impound basin

SEDIMENTATION (GGRB)
- Laramide shortening
- 5.5 Myr of deposition (52.5 - 47 Ma)
 Smith et al., 2003, 2008

EOCENE CLIMATE
- Subtropical (15 - 23°C)
- Humid (75 - 100cm precip/year)
- Moderate seasonality

Marwick, 1994; Wilf, 2000
Lake Type Model - Carroll and Bohacs, 1999

Sediment + H₂O > Accommodation

Sediment + H₂O ≈ Accommodation

Sediment + H₂O < Accommodation

Over-Filled

Balanced-Filled

Under-Filled

Potential Accommodation

Sediment Fill + H₂O

Fluvial

Over-Filled

Balanced-Filled

Under-Filled

Eolian
Over-Filled
Sediment + H₂O > Accommodation

Balanced-Filled
Sediment + H₂O ≈ Accommodation

Under-Filled
Sediment + H₂O < Accommodation

- **Low-quality oil shale**
 - Fluvial-Lacustrine lithofacies assemblage

- **High-quality oil shale**
 - Fluctuating-Profundal lithofacies assemblage

- **Limited oil shale development**
 - Evaporative lithofacies assemblage

Lake Type and Source Potential - Bohacs et al., 2000
Green River Formation, Wyoming

A - South

- Over-filled
- Balanced-filled
- Under-filled
- Alluvial Fan
- Fluvial
- Palustrine
- Coal Stringer
- Dated Tuff

A' - North

- Wilkins Peak
- Farson
- Sand Butte Bed

Wasatch Fm.

Lumon

Tipton

Bishop Conglomerate (Oligocene?)

Scheggs

Uplift

Continental Fault

Greater Green River Basin

Balanced-filled

Under-filled

Alluvial Fan

Fluvial

Palustrine

Coal Stringer

Dated Tuff

100m

30 km

100 km

Modified from Pietras, 2006
Constraining the Tipton Transitions: METHODS

- 3 core, 6 field sections described at cm-scale resolution
- Represent N-S transect of >150km, from deep profundal to marginal depositional environments
- 13 lithofacies grouped into 2 lithofacies assemblages:
 - FLUVIAL-LACUSTRINE
 - FLUCTUATING PROFUNDAL
Fluvial-Lacustrine Assemblage: **BASIN-WARD EXPRESSION**

- Massive Mudstone with cm- to decimeter-scale interbeds of fining-upward siltstone and, less frequently, coquina
- Low organic content, ranging from 2-16 Gal./ton
- Freshwater bivalves, gastropods, ostracodes, burrows
- Absence of parasequences and thick tuff laminations

- Sustained high-stand conditions
- Oxygenated lake waters with limited to non-existent chemical and thermal stratification
Fluvial-Lacustrine Assemblage: **SHOREWARD** EXPRESSION

- Stacked, coarsening upward cycles of laminated mudstone, siltstone, and well-sorted sandstone lithofacies
- Imprints of terrestrial flora, silt rip-ups, and loading features are abundant throughout
- Cycle thickness decreases basin-ward; number of sequences and ratio of coarse-grained to fine-grained sediments decrease

- Lateral migrations of a deltaic system
- Lithofacies and associated sedimentary structures indicate rapid deposition
Fluctuating Profundal Assemblage: **BASIN-WARD EXPRESSION**

- Alternating intervals of organic-rich (20-26 Gal./ton) and less organic-rich (9-22 Gal./ton) finely-laminated mudstone form meter-scale parasequences.
- Fish and ostracodes are the primary-preserved organisms.
- Tuff laminations (3mm - 15cm) are frequent and often kerogen-saturated.

- Oscillations between low- and high-stand lake conditions.
- High rate of organic preservation suggests a chemically and thermally stratified lake system.
- The replacement of bivalves/gastropods with fish suggests a shift towards more saline conditions.
Fluctuating Profundal Assemblage: **SHOREWARD EXPRESSION**

- Coarse-clastic, biogenic, and fine-grained, organic rich lithofacies
- Fish “debris”, stromatolite, burrows, and ostracode accumulation
- Mud cracked horizons and thick tuffs (>20 cm)
- Vertically grades into green, evaporative-mineral bearing siltstone and mudstone lithofacies of the Wilkins Peak Member

- Oscillations between high- and low-stands
- Larger regressive trend towards under-filled conditions of the overlying Wilkins Peak Member
- Thick tuff laminations indicate quiet hydrologic conditions in which suspended deposits are preserved
BASIN-WARD

Fluvial-Lacustrine Facies Assemblage
Fluctuating Profundal Facies Assemblage

SHORE-WARD

Fischer Assay Data from Roehler, 1991; Whitehorse Creek Field Section modified from Pietras, 2003

Spring Deposit
Sand Package
Stromatolite
Core
Higher quality oil shales are associated with *Fluctuating Profundal* intervals

Low quality oil shales are associated with *Fluvial-Lacustrine* intervals

Fischer Assay Data from Roehler, 1991;
Fluvial-lacustrine intervals: CALCITIC
Fluctuating profundal intervals: DOLOMITIC

Biogenic Model of Dolomite Distribution
Mg preferentially concentrated by blue-green algae
Desbourough, 1978
Fischer Assay Data from Roehler, 1991; Whitehorse Creek Field Section modified from Pietras, 2003
$\delta^{13}C$ influenced by:

1) Primary productivity
 \[\text{Prod} \uparrow^{13}C \uparrow \]

2) Rate of organic decomposition
 \[\text{Decomp} \uparrow^{13}C \downarrow \]

3) Dissolved inorganic carbon from limestone bedrock
 \[\text{Lime} \uparrow^{13}C \downarrow \]

Fluvial-lacustrine lower productivity, higher rates of decomposition

Fluctuating Profundal high productivity, lower rates of decomposition
\(\delta^{18}O \) influenced by:

1) Climate / Evaporation
 \[\text{Temp} \uparrow \quad ^{18}O \uparrow \]

2) Elevation
 \[\text{Elev} \uparrow \quad ^{18}O \downarrow \]

3) Residence Time
 \[\text{Time} \uparrow \quad ^{18}O \uparrow \]

Fluvial-lacustrine waters had shorter residence time in the lake

Fluctuating Profundal waters had longer residence in the lake
Tipton Stable Isotopic Signature

Fluvial-Lacustrine Facies Assemblage
Sand Package
Fluctuating Profundal Facies Assemblage
Stromatolite
Spring Deposit
Core

Fischer Assay Data from Roehler, 1991; Whitehorse Creek Field Section modified from Pietras, 2003

BASIN-WARD

SOUTH

NORTH

SHORE-WARD
The Scheggs-Rife contact represents the initial impoundment of Eocene Lake Gosuite, and is represented by a trend towards heavier 18O and 13C, an increase in organic content, cessation of the Farson Sandstone, and a trend towards dolomitic mineralogy.

3 distinct lake-type transitions are preserved within the Tipton Member, representing an oscillation between over-filled and balanced-filled lake conditions.

These transitions are thought to result from the diversion, re-capture, and terminal diversion of significant drainage network away from the basin.
Acknowledgements

UW-Madison Lacustrine Basins Research Team
Eric Williams Amalia Doebbert Meredith Rhodes-Carson M. Elliot Smith
Lauren Chetel Jana Van Alstine Wasinee Aswasereelert Jeff Pietras
Andrew Trzaskus

Lisa Lesar, Field Assistant

S.W. Bailey X-ray Diffraction Laboratory at UW-Madison
Huifang Xu Jason Huberty Hiromi Konishi

The University of Michigan Stable Isotope Laboratory

USGS Core Repository, Denver, Colorado