Comparison of Oil Generation Kinetics for Oil Shales as Determined by Rock-Eval and Hydrous Pyrolysis

Michael D. Lewan
U. S. Geological Survey, Denver, CO

Ronald J. Hill
Western State College, Gunnison, CO

Tim E. Ruble
Humble Geochemical Services, Humble, TX
Objective

Determine whether oil-generation kinetics derived by different pyrolysis methods are critical to determining timing and extent of oil generation in surface and *in situ* retorting.
Natural Oil Generation

The laboratory pyrolysis method used to derive oil generation kinetics can have a significant effect on determining timing and extent of natural oil generation from source rocks in sedimentary basins.

Hydrous Pyrolysis (HP) kinetics for an 80-Ma source rock in a sedimentary basin with a heating rate of 2.5°C/m.y.
The laboratory pyrolysis method used to derive oil generation kinetics can have a significant effect on determining timing and extent of natural oil generation from source rocks in sedimentary basins.

Rock Eval Pyrolysis (RE) kinetics for an 80-Ma source rock in a sedimentary basin with a heating rate of 2.5°C/m.y.
Does the same hold true for oil shale retorting?

Does the laboratory pyrolysis method used to derive kinetics have a significant effect on determining timing and extent of oil generation in oil-shale retorting?
Pyrolysis Methods

Rock-Eval (RE) Kinetics
- Bulk (REb)
- Compositional (REc)

Hydrous Pyrolysis (HP) Kinetics

Graph showing pressure vs. temperature with markers for different stages of pyrolysis:
- Rock Eval (t = minutes)
- Hydrous Pyrolysis (t = days)
- Natural Oil Generation (t > 10^6 years)

Legend:
- CP: Critical Point
- n-C15 v/l curve
- H2O v/l curve
- v: vapor phase
- l: liquid phase

Graph showing temperature on the y-axis and pressure on the x-axis with various points indicating different stages of pyrolysis.
Samples

- **P** Phosphoria Retort Shale
 - 23.6 wt% TOC of **Type-II**

- **A** Alum Shale (Sweden)
 - 13.2 wt% TOC of **Type-II**

- **N** New Albany Sh. (EOS)
 - 14.3 wt% TOC of **Type-II**

- **G** Green River (Mahogany)
 - 15.2 wt% TOC of **Type-I**
Rock-Eval Pyrolysis Methods

Bulk RE

Compositional RE

Temperature = 250 to 650ºC
Pressure = ~1 atm
Heating Rates = 1, 5, 15, 30, and 50ºC/min
Hydrous Pyrolysis Methods

Isothermal Heating at
Temperatures = 250 to 365ºC
Times = 12 to 120 hours
Pressures = 600 to 3,000 psia

200 - 500g Crushed Source Rock (0.5 - 2.0 cm)
Hydrous Pyrolysis Products

Bitumen Oil

Kerogen

Hydrous Pyrolysis Products

Immiscible Oil
Rock-Eval Products

- Volatilized HCs
 - Carrier Gas
 - 20-50 mg Powdered Source Rock (< 25 μm)

- Electronic signal of volatilized hydrocarbons
 - To FID Detector

- S2 Rock Eval
 - (Behar et al., 1997)

- Time (min)

- FID Response

- HP Oil
- Bitumen
- SATURATES 100 wt%
Hydrous Pyrolysis Isothermal Kinetics

\[
\ln k = -27149 \left(\frac{1}{T} \right) + 39.74 \\
R^2 = 0.991 \\
E_a = 53.95 \text{ kcal/mol} \\
A_o = 1.814 \times 10^{17} \text{ h}^{-1}
\]
Rock-Eval Non-isothermal Kinetics

Heating Time (s)
- 50°C/min (70,300 mVs)
- 30°C/min (51,300 mVs)
- 15°C/min (32,500 mVs)
- 5°C/min (13,900 mVs)
- 1°C/min (6,300 mVs)

S2-Generation (mV)

% Overall Reaction

$A_0 = 9.41E+17/h$

Ea (kcal/mol)
Comparison of Pyrolysis Methods For Deriving Oil Generation Kinetics

<table>
<thead>
<tr>
<th>Attribute</th>
<th>HP</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>Isothermal</td>
<td>Non-isothermal</td>
</tr>
<tr>
<td>Temperatures (°C)</td>
<td>250-365</td>
<td>250-650</td>
</tr>
<tr>
<td>Times (h)</td>
<td>12-120</td>
<td>0.5-7</td>
</tr>
<tr>
<td>Pressures (psia)</td>
<td>600-3000</td>
<td>~15</td>
</tr>
<tr>
<td>Products</td>
<td>HC-rich oil</td>
<td>Polar-rich bitumen</td>
</tr>
</tbody>
</table>
Bulk RE versus Comp RE Timing at 95% Generation
Comparison of Timing at 95% Generation of Green River Shale (Type-I)
Comparison of Timing at 95% Generation of Green River Shale (Type-I)
Comparison of Timing at 95% Generation of New Albany Shale (Type-II)
Comparison of Timing at 95% Generation of Alum Shale (Type-II)

![Graph showing comparison of timing at 95% generation of Alum Shale (Type-II). The graph plots time (h) for 95% reaction against temperature (°C). Different symbols and lines represent in situ, REc, REb, and HP at various time scales (second, minute, hour, day, week, month, year).]
Comparison of Timing at 95% Generation of Phosphoria Retort Shale (Type-IIS)

Time (h) for 95% Reaction

Temperature (°C)
Conclusions

Pyrolysis Methods for determining oil generation can make a significant difference in determining timing and extent of natural petroleum generation.

do not make a significant difference in determining timing and extent of *in situ* oil-shale retorting.

may make a significant difference in determining timing and extent of *surface* oil-shale retorting (Type-IIS).